- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0003000001000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Xue, Nianwen (4)
-
Yao, Jiarui (4)
-
Min, Bonan (3)
-
Qiu, Haoling (2)
-
Chun, Jayeol (1)
-
Cowell, Andrew (1)
-
Croft, William (1)
-
Hajič, Jan (1)
-
Huang, Chu-Ren (1)
-
Lai, Kenneth (1)
-
Martin, James H. (1)
-
Moeller, Sarah (1)
-
Oepen, Stephan (1)
-
O’Gorman, Tim (1)
-
Palmer, Martha (1)
-
Pustejovsky, James (1)
-
Vallejos, Rosa (1)
-
Van Gysel, Jens E. (1)
-
Vigus, Meagan (1)
-
Zhao, Jin (1)
-
- Filter by Editor
-
-
null (3)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Yao, Jiarui; Qiu, Haoling; Zhao, Jin; Min, Bonan; Xue, Nianwen (, Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers))null (Ed.)
-
Yao, Jiarui; Qiu, Haoling; Min, Bonan; Xue, Nianwen (, Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP))null (Ed.)
-
Van Gysel, Jens E.; Vigus, Meagan; Chun, Jayeol; Lai, Kenneth; Moeller, Sarah; Yao, Jiarui; O’Gorman, Tim; Cowell, Andrew; Croft, William; Huang, Chu-Ren; et al (, KI - Künstliche Intelligenz)null (Ed.)In this paper we present Uniform Meaning Representation (UMR), a meaning representation designed to annotate the semantic content of a text. UMR is primarily based on Abstract Meaning Representation (AMR), an annotation framework initially designed for English, but also draws from other meaning representations. UMR extends AMR to other languages, particularly morphologically complex, low-resource languages. UMR also adds features to AMR that are critical to semantic interpretation and enhances AMR by proposing a companion document-level representation that captures linguistic phenomena such as coreference as well as temporal and modal dependencies that potentially go beyond sentence boundaries.more » « less
An official website of the United States government
